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Abstract 

The regularised energy surface of the n-dimensional hydrogen atom is shown to be 
naturally the total space of a quantisable dynamical system. The automorphJsm groups 
of dynamical systems are studied; and the connected Riemannian dynamical systems 
with automorphism groups of maximal dimension are classified. Finally, the compact, 
connected and simply connected quantisable dynamical system with automorphism 
group of maximal dimension is shown to be the set of independent harmonic oscillators 
with equal periods. 

Introduction 

Recently Onofri & Pauri (1972a, 1972b) have considered the n-dimen- 
sional hydrogen a tom or the n-dimensional Kepler problem within the 
f ramework of  dynamical symmetry groups and canonical quantisation. 
Let P = ( P l , . . . , P , )  and q = ( q l  . . . .  ,q,); then the Hamiltonian is H =  
(llpll2/2m) - (k/llqlI). The associated Hamiltonian vector field on the phase 
space B 2"= T*(R" -{0})  is not complete (in the sense of  Kobayashi & 
Nomizu,  1963, Section 1.1); and the surfaces So of constant negative 
energy H = - a  2 are connected but non-compact. To remove the singularity 
of  q = 0, a canonical (= symplectic) change of  coordinates is performed; 
then by a compactification of  the resulting energy manifold, the Hamiltonian 
vector field is made complete (by Kobayashi & Nomizu, 1963, Proposition 
1.1.6). This has been outlined by Moser (1970) (following Levi-Civita 
(1906) in the case n = 2) (cf. Onofri & Pauri, 1972b, Section 2.c) and 
independently by Andrie & Simms (1972) in the case n = 2 (following 
Bacry et al. (1966), and so Fock (1935) et alia); here the new energy surface 
~n is shown to be the unit tangent bundle of  the n-dimensional sphere S ~-- 
i.e. the Stiefel manifold V,+1,2 % S O ( n  + 1)/SO(n - 1) (cf. Steenrod, 1951, 
Section 7.7). In the case n = 2 ,Sn = V3,2 = RP(3) = SO(3) = S0(4) /0(3) .  
The first main result of  this paper is to show that the energy surface ~n is 
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naturally the total space of  a quantisable dynamical system (= QDS). The 
details on QDSs are to be found in Hurt  (1968, 1970a, 1970b, 1970c, 1971a, 
1971b, 1972a, 1972b, 1973a, 1973b); cf. also Onofri & Pauri (1972b). We 
review this subject briefly below. 

1. Quantisable Dynamical Systems and the Hydrogen Atom 

A dynamical system (M, f2) is a (2n + 1)-dimensional manifold M with a 
2-form I2 on M of rank 2n (v. Hurt, 1971a, Section 2). From Hurt (1971a), 
Proposition 2.4 and 2.5 a dynamical system (= DS) on M is specified by a 
triple (r where r is a tensor field of  type (1,1), 09 is a 1-form and Z 
is a vector field on M satisfying the axioms: (1) og(Z) = 1 and (2) r = 
- I d +  o9 | Z; i.e. (r is an almost contact structure on M. If  do9 = f2, 
then (M, f2) is called a contact manifoM or a contact dynamical system 
(= cDS). 

If  the vector field Z for a DS(M,(2) specified by (r is proper 
(= complete), respectively regular in the sense of  Palais (1957), then (M, (~) 
is said to be a proper, respectively regular, DS. If the period function 
(v. Hurt, 1971a, Section 5) is a constant, finite or infinite, then the DS (M, ~) 
is said to befinite or infinite. If  M is compact, then the DS(M,(2) is called 
compact; as noted above every vector field is then proper and clearly the 
DS is then finite. A proper regular finite cDS is called a quantisable dynamical 
system (= QDS) (v. Hurt, 1968, 1970a, 1970b, 1970c, 1971a, 1971b, 1972a, 
1972b, 1973a, 1973b). 

Let G a denote a one dimensional Lie Group (compact or non-compact) 
and let s denote Lie derivative (v. [19]). Then by Hurt (1971a), Proposition 
5.3 we have 

Proposition 1.1 (Tanno, 1965). If  (M, f2) is a proper regular DS with 
~(Z)o9  = 0, then GI -+  M - +  B is a principal Ga-bundle and o9 is the 
connection form; here G a =  R, respectively S a, as (M,O) is infinite, res- 
pectively finite. 

Corollary 1.2 (Tanno, 1965). If  (M, f2) is a compact, regular cDS (so a 
QDS), then M is the total space of  a principal Sa-bundle over the manifold 
B. 

Due to this principal bundle structure, the manifold M in a DS (M, 12) 
is called the total space of the DS. 

By Oguie (1965) Theorem 1.1 we have 

Proposition 1.3. If  (M, f2) is a regular DS with all integral curves of  Z 
homeomorphic and if ~ce(Z)r163 then Ga-+M-->B is a 
principal Ga-bundle with connection form co and a natural almost complex 
structure J on B induced by (r o9,Z). 

Corollary 1.4. If  (M, f2) is a compact regular DS and & e ( Z ) r  
s o9 then M is a principal Sa-bundle over B. 
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As noted in Hurt (1971a), Proposition 2.4, every DS admits a Riemannian 
metric g such that g( X,Z) = co( X) and f2( X, Y) = g( X, q~ Y). Then 
(49,og,Z,g) is called an almost contact metric (or Riemannian) structure. If  
in this case Z is a Killing vector field (i.e. s = 0) then (M, f2) is called 
a K-almost contact metric manifold, or a K-DS. To relate Propositions 1.1 
and 1.3 above we quote: 

Proposition 1.5 (Tanno, 1965). If  (M, f2) is a proper, regular cDS, then 
there is an almost contact metric structure (qb, oo,Z,g) associated to the 
contact form co such that La(Z) q5 = 0 (i.e., (M,O) is a K-cDS). 

Proposition 1.6 (Tamao, 1965). If  (M, I2) is a proper regular DS, then 
La(Z) q5 = 0 i f fMis  the total space of a principal G~-bundle with connection 
form co and almost complex manifold B as base. 

Let V,,~(R) denote the set of orthonormal k-frames in R", so 
V.,k(R)  = O ( n , R ) / O ( n  - k , R )  = S O ( n , R ) / S O ( n  - k , R )  = the  S t i e f e l  mani- 

folds. Let G,,,k(R), respectively G~,~(R), denote the set of (respectively 
oriented) k-planes through the origin. As homogeneous spaces the Grass- 
mann manifolds are 

G., k(R) = O(n, R)/O(k, R) x O(n - k, R) 
respectively 

G~, k(R) = SO(n, R)/SO(k,R) x SO(n - k, R). 
Thus 

and 
O(/c, R)  - +  V. ,k(R)  - +  G. ,~(R)  (1.1) 

(1.2) 

Proposition 1.7. The regularised energy surface ~ .  = V.+I,z(R) of the 
n-dimensional hydrogen atom is naturally the total space of a (normal) 
QDS. 

Proof. First note that (1.2) for case k = 2 gives 

S 1 - +  V.+1,2 - +  G~+1,2, 

which is a principal circle bundle over the complex quadric Q,_I(C). By 
Chern (1969), p. 61, Q,_I(C) is a Hodge manifold; and so by Hurt (1971a), 

SO(k, R) -+ V.,~(R) -+ G;,k(a) 

are natural fibrations and 

Z2 --> G;,k(R) --> G.,k(R) (1.3) 

is the natural two-fold covering. 
Let Q._I(C) denote the complex quadric which is defined by the homo- 

geneous equation ~=o z~ 2 = 0 for homogeneous coordinates {zz} of a point 
in complex projective space CP(n). Then Q._~(C) is diffeomorphic to 
G~+x, 2(R) (v. Dieudonne, 1971, XX Section 11). (We note that real quadrics 
which are QDSs have been studied in [17].) 

The main result mentioned above is: 
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Corollary 6.8 there is a natural normal (or Sasakian) QDS over 
Q,,_i(C), namely (M, f2) for a natural f2 such that S 1 --~ M--~ Q,_I(C) is a 
principal circle bundle. It is easily shown that M is diffeomorphic to 
V,+1,2 (v. Kenmotsu, 1970, Theorem 4). QED. 

Remark 1. We note that by Boothby & Wang (1958), Corollary, 
p. 733, if (M, f2) is a homogeneous QDS (v.i.) of dimension 4r + 1 (r > 1), 
then M is homeomorphic to the unit tangent bundle U* X of a manifold 
X only when M = V2r+2,2. 

Remark 2. Since Q,_I(C) is an Einstein manifold, then M in Proposition 
1.7 above is an co-Einstein manifold (v. Kenmotsu, 1970; Tanno, 1967). 

2. Automorphism Groups and the Harmonic Oscillator 

If  D = (cb,co,Z,g) is a contact metric structure on a cDS (M, Y2) and if a 
certain Nijenhuis tensor field vanishes (v. Hurt, 1971a, Section 2), then 
D is called a Sasakian structure and (M, Y2) is called a normal contact 
manifold or a Sasakian DS. And by Hurt (1971a), Proposition 2.7 if 
(M, ~2) is a Sasakian DS, then (M, O) is a K-Riemannian cDS. 

Let (M,O) be a Riemannian cDS specified by D = (~b, co,Z,g). I f~*  = ~b, 
Z* = a-IZ,  co* = aco and g* = ag+ ( a  2 - -  •)CO @ CO for a positive constant 
a, then D ' =  (r is also a contact metric structure on M, 
which is called the D-homothetic deformation. In fact 

Lemma 2.1 (Tanno, 1968). If  D is a K-contact (respectively Sasakian) 
structure on M, then D ~ is also a K-contact (respectively Sasakian) structure 
on M. 

If  (M, f2) is a cDS, then the set of diffeomorphisms f of M which satisfy 
f ' c o  = co forms a group, called the group S(M)  of strict contact trans- 
formations. If  there is a transitive Lie group G of  strict contact transforma- 
tions on cDS (M, f2), then (M, f2) is called a homogeneous cDS, or a homo- 
geneous contact manifold in the sense of Boothby & Wang (1958). In this 
case (M, f2) is a regular cDS by (Boothby & Wang, 1958), Theorem 4. 

If  (~b, co, Z)  and (~', co',Z') are two almost contact structures on a mani- 
fold M, then the set of diffeomorphisms f of M, which satisfy (1 ) fo  ~b = 
q$' o f  and (2) f (Z)  = Z ' ,  forms a group, Aut(M). Since 

Lemma 2.2 (Morimoto, 1963). I f f e  Aut(M), then f ' c o '  = co is true, 
Aut(M) is the group of transformations of M which leaves invariant the 
almost contact structure, or the DS structure, of M; thus Aut(M) is called 
the group ofautomorphisms of (M, Q). 

For a suitable topology we have 

Proposition 2.3 (Sasaki, 1965-1968). If  (M, Y2) is a compact DS, then 
Aut(M) is a Lie group. 
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Proposition 2.4 (Hatakeyama, 1966). If (M, O) is a compact regular cDS 
(hence a QDS), then S(M) acts transitively on M. 

Proposition 2.5 (Morimoto, 1963). If(M, f2) is a compact simply connected 
homogeneous cDS (hence a QDS), then M has a normal almost contact 
structure such that Aut (M) acts transitively on M. 

Let ~(M) denote the group of all diffeomorphisms of a DS(M,12) 
specified by (~b,og, Z) which leave q5 invariant. 

Proposition 2.6 (Tanno, 1963; Sasaki, 1965-1968, Theorems 25.1, 26.1). 
If (M, K2) is a Riemannian cDS, then ~(M) is a Lie group, dim~(M) ~< 
dimAut(M) + 1, and ~(M) = S(M). 

Proposition 2.7 (Tanno, 1963; Sasaki, 1965-1968). If(M, 12) is a compact, 
Riemannian cDS, then ~(M) = Aut(M) = S(M); and ~(M) c Isom(M), 
where Isom (M) is the group of isometries of M. 

For more details on ~(M), Isom(M), and Aut(M), cf. Tanno (1963, 
1969, 1970). 

Proposition 2.8 (Tanno, 1963). If (M, f2) is a Riemannian cDS and M 
is an Einstein space, then ~ ( M ) =  Aut(M). For example, if (M, f2) is a 
K-cDS and M has parallel Ricci tensor (as when (M, f2) is a K-cDS and M 
is a symmetric space), then the hypotheses are satisfied. 

Proposition 2.9 (Tanno, 1969). If (M, f2) is a metric DS specified by 
D = (~,og, z,g), then the automorphism groups Aut(M) and Aut*(M) 
with respect to D and D ", respectively, coincide. 

Recall that the sectional curvature of a two-plane (= two-dimensional 
subspace of the tangent space Tx(M) at point x in M) with orthonormal 
basis {X, I:)is K(X, Y)= g(R(X, Y)X, Y)(v. Kobayashi & Nomizu, 1963). 
Let (~,og,Z) specify a DS(M, K2). Then a two-plane is a 49-holomorphic 
section if it is spanned by a unit vector X orthogonal to Z (i.e. co(X) = 0) 
at x and ~bX. Then for the basis {X, q~X} of this two-plane, the (o-holomorphic 
sectional curvature at x is K(X,~X). If K(X,c~X) is a constant H for all 
points x in M and for all q~-holomorphic sections, then (M, f2) is said to 
have constant 49-holomorphic sectional curvature. 

Proposition 2.10 (Tanno, 1969). If (M, f2) is a Sasakian DS and if 
2n + 1 >t 5, then M always has constant ~b-holomorphic sectional curvature, 
say H. And if H > -3,  by a suitable choice of ~, M has constant curvature 1 
with respect to the deformed structure D ". 

Let S 2"+1 be the unit sphere in Euclidean space E 2n+2. Let J be the 
natural complex structure on CE "+1 = E 2n+2. Take Z = .Ix for unit vector 
x in S 2n+~ and g the induced metric from E 2"+2 onto S 2"+~. Then g and Z 
determine co and q5 by o9--- g(Z,.) and dog(X, Y) = g(X, q5 Y); and (~b, Z, co, g) 
is a Sasakian structure (v. Sasaki, 1965-1968; Tanno, 1969). Let D" be as 
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above with c~ = 4/(H + 3) > 0. Then D ~ is a Sasakian structure on M with 
constant @holomorphic sectional curvature H > - 3  (cf. Tanno, 1968); 
and denote S 2"+1 with this structure by S2"+I[H]. Let E2n+l[-3] be E 2"+~ 
with the natural Sasakian structure and constant @holomorphic sectional 
curvature H----3,  as defined in Tanno (1969). Let CD" be the open unit 
ball in C", L -- R and (L, CD") the product bundle L • CD" ---> CD". There 
is a natural Sasakian structure on (L, CD") with constant @holomorphic 
sectional curvature H < - 3 ,  v. Tanno (1969). Denote this space by 
(L, CD") [HI. 

Proposition 2.11 (Tanno, 1969). I f  (M, f2) is a connected and simply 
connected, complete Sasakian DS with constant @holomorphic sectional 
curvature H, then M is diffeomorphic to a homogeneous space Aut(M)/  
(Isotropy group) and M is isomorphic (i.e. structurally preserving diffeo- 
morphic) to: 

(1) s2n+I[H] if H > - 3  ; or M is D-homothetic to $2"+~[1 ]; 
(2) EZ"+l[-3], if H= -3 ;  
(3) (L, CD") [HI, if H < -3 .  

These are all proper, regular (since they are homogeneous) cDS; and 
so they are of  the form G ~ -+ M -+ B where B is CP(n) in case (1), C n in 
case (2), and CD" in case (3) and G 1 = R or S ~. 

Tanno has also classified connected Riemannian DSs with automorphism 
groups of maximal dimension. Namely, 

Proposition 2.12 (Tanno, 1969). I f  (M, f2) is a connected Riemannian DS 
of dimension 2n + 1, then dimAut(M) ~< (n + 1) z. And the maximum is 
attained iffthe sectional curvature for two-planes containing Z is a constant 
c and M is one of the following spaces: 

(1)  c > 0:  a homogeneous Sasakian manifold (or its e-deformation) with 
constant @holomorphic sectional curvature H and: 

(la) Sz"+I[H]/F(q) for H > - 3  where F(q) denotes a finite (cyclic) 
group generated by exp (qZ) where 2re. 4(H + 3)-1/q is an integer; 

(lb) E2"+l[-3]/F(tz) for H = -3,  where F(tz) is a cyclic group generated 
by exp(t2Z) where tz is a real number; 

(lc) (L, CD")[H]/F(t3) for H < -3  where t3 is a real number; 
(2) c = 0: six global Riemannian products 

A x CP(n), A :k CE", A • CD" 

where A = S 1 or L;  
(3) e < 0: a product space LxctCE" (v. Tanno, 1969). 

Corollary 2.13. If (M, f2) is a connected Sasakian DS then dimAut (M) = 
(n + 1) 2 iff (M, f2) has constant @holomorphic sectional curvature and is 
one of (a), (b) or (c) in Proposition 2.12 above. 
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Corollary 2.14. I f  (M, f2) is a compact ,  connected and simply connected 
Riemannian  DS, in particular if  (M, Q) is a compact  connected and simply 
connected QDS, and if d i m A u t ( M )  = (n + 02, then M is a sphere with a 
Sasakian structure or  its deformat ion;  and by Hur t  (1970) this QDS is the 
system o f  independent harmonic  oscillators with equal periods. 
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